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Objectives

1. Introduce the MD technique

2. Show the KFUPM activities 

3. Share some results

4. Future plans
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Energy & Water: Basic Ingredients of Modern Society.

Population          Conventional Energy & Water Resources

Alternative Sources for Energy (Solar, Wind, Geothermal, Nuclear, etc.)

Alternative Sources of  fresh Water == Desalination

Energy Water Nexus
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Water Scarcity
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Production of desalinated water



DESALINATION

refers to any processes that remove some amount of 
salt and other minerals from saline water to obtain 
clean water, suitable for human consumption, 
irrigation and industrial uses.
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• Thermal Desalination

• Membrane Desalination 



1. Thermal Desalination Processes

It is the most widely used desalination 
techniques in the world. 
In thermal desalination, the specific amount 
of heat is provided to boil the water.

Examples: 

• Multi-Stage Flash (MSF) Desalination
• Multi Effect Distillation (MED)
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2. Membrane Desalination: Reverse Osmosis

Forcing a solvent from a region of high solute concentration through a 
semipermeable membrane to a region of low solute concentration by 
applying a pressure in excess of the osmotic pressure.
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• High consumption of non-renewable energy:

we are looking for new techniques or processes 
with lower energy consumptions.

• High cost 

Capitals and running cost  (maintenance and 
operations) are very high. New designs and/or 
technologies may be cheaper and more 
compact.

• Pollution 

Environmental concerns

Reasons of Change
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Emerging Desalination Technologies

• Membrane Distillation

• Forward Osmosis

• Dew Evaporation

• Nano-Desalination

• Thermo-Ionic Desalination Process

• Low Temperature Thermal Desalination

• Capacitive Deionization (CDI)

• Solar Desalination

• Geothermal Desalination

10



Membrane Distillation (MD)

MD is a thermally driven membrane technique for separating water vapor from 
a saline solution using a micro-porous hydrophobic membrane.
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• A hot, saline feed stream is passed over a 
micro-porous hydrophobic membrane. 

• The temperature difference between the two 
sides of the membrane leads to a vapor 
pressure difference.

• This causes water vapor in the hot feed side to 
pass through the membrane pores, and 
condense either on the cold side of the 
membrane, directly or in an external 
condenser. 

• The hydrophobicity of the membrane keeps 
the liquid from passing through the pores.
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Why MD?

 Lower operating temperatures (400C – 900C).

 Possibility to use waste heat and renewable energy like solar energy (Solar
heating can be easily applied in Saudi Arabia).

 Lower operating hydrostatic pressures.

 High salt rejection factors (we got 99.99%)

 Less demanding membrane characteristics.

 Membrane fouling in MD is less of a problem.

 No Extensive pretreatment is necessary.

 Compactness of Design



Direct Contact MD Air Gap MD

Seeping Gas MD Vacuum MD

Basic Configuration of MD modules
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MD Research Activities at KFUPM



Undergraduate Students Work
Sep.2012 to Sep. 2013
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Design of Module
Criteria considered

• Pressure losses 

• Good level of turbulence

1st

2nd

dimensions in m Temperature 20

width = 1.00E-02 depth = 3.00E-03 length = 3.00E-01

Perimeter = 0.026 friction factor = 0.00425 D-hydrulic= 0.00461538

density= 998.2 viscosity= 1.002E-03 Area= 0.0000300

# V (m/s) flow Q (l/min) Renolds No#

1 0.55556           1 2,554.378          

2 1.11111           2 5,108.757          

3 1.66667           3 7,663.135          

4 2.22222           4 10,217.514        

5 2.77778           5 12,771.892        

6 3.33333           6 15,326.271        

7 3.88889           7 17,880.649        

8 4.44444           8 20,435.027        

9 5.00000           9 22,989.406        

10 5.55556           10 25,543.784        

11 6.11111           11 28,098.163        

12 6.66667           12 30,652.541        

13 7.22222           13 33,206.920        

14 7.77778           14 35,761.298        

15 8.33333           15 38,315.676        

1,531.960                             

2,085.167                             

2,723.484                             

3,446.909                             

4,255.444                             

5,149.087                             

channel width 10 mm

pressure drop (pa)

42.554                                   

170.218                                

382.990                                

6,127.839                             

7,191.700                             

8,340.670                             

9,574.748                             

680.871                                

1,063.861                             
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AGMD Cell
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The MD setup and module
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Effect of feed flow rate
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Effect of Feed Water Salinity [g/L] on permeate flux



Academic year 2013-2014

Objective: get into details
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• University funded project

• Theoretical analysis to predict the flux

• Design of the MD module and System

• Benchmark experimental data



• .
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Mass Transfer

Theoretical Analysis: DCMD
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Heat Transfer



Heat & Mass Transfer in DCMD..

• .
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Modelling Results for DCMD

.
Flux vs. feed temperature in DCMD. Permeate temperature is 210C; feed flow rate 

is 12 L/min and permeate flow rate is 4 L/min. No salt concentration.
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Modelling Results for DCMD

.

permeate flow rate is 3 L/min, feed temperature is 60°C, permeate temperature is 21°C.



Modelling Results for AGMD
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Improving the Design of MD system:

• Prevent internal leakage

• Easy to assemble

• Easy to control (flow, temp., pressure,….)

• Use different material

• Structural support to hold the system

• Sensors (flow, temperature, pressure, power, E. conductivity, etc.)

• Data Acquisition System with labview software.

• Optimization of the operating conditions
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Other designs
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Schematic Diagram Of The Experimental Setup



32

The Actual Laboratory Setup
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The Connected MD Module
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coolant temperature of 30 ˚C, feed flow rate of 3L/min and coolant flow rate of 3 L/min. 

Samples of results: AGMD

Effect of feed temperature and gap width
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Effect of Feed solution concentration
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coolant temperature of 30 ˚C, feed flow rate of 3L/min, coolant flow rate of 
3 L/min and air gap width of 3mm. 

17.54% drop in flux

Samples of results: AGMD
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Properties PTFE 0.22 μm PTFE 0.45 μm

δfull membrane (μm) 159.5 ± 18.0 153.9 ± 13.6

δteflon (μm) 7.9 ± 1.8 6.9 ± 2.0

δsupport (μm) 143.3 ± 15.6 141.4 ± 15.8

dp (nm) 236 ± 6 379 ± 8

ε (%) 75.9 ± 5.4 79.7 ± 8.7

θ (º) active layer 138.3 ± 2.4 139.0 ± 2.8

θ (º) support layer 121.4 ± 3.4 119.3 ± 1.0

Membrane Pore size



Membrane Degradation Test
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feed temperature of 70 ˚C, coolant temperature of 20 ˚C, coolant flow rate of 3 L/min, feed flow 
rate of 3 L/min and air gap width of 3mm.The feed solution is seawater having TDS of 60g/L. 

Samples of results: AGMD

26% reduction in flux over 38 
hours of operation
(no pre-treatment of seawater)
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feed temperature of 70 ˚C, coolant temperature of 20 ˚C, coolant flow rate of 3 L/min, feed flow 
rate of 3 L/min and air gap width of 3mm.The feed solution is seawater having TDS of 60g/L. 

Above 99.95% 

Membrane Degradation Test
Samples of results: AGMD
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Direct Contact MD
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Water and Air Gap Membrane Distillation 
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Water and Air Gap Membrane Distillation: Module Assembly 
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Water and Air gap Module Assembly
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Instrumented Module
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Conclusions
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• The membrane distillation (MD) technique is promising

• It is easy to apply, and with compact design.

• Low energy consumption.

• Solar energy utilization enhances its potential.

• Good flux output.

• Still there is a room for improvement.



The Future Work

Objective: To contribute in developing the MD systems

• Using the solar energy with MD

• Multi-stage module

• Energy recovery and optimization

• Advanced modeling
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